
CS490 - Autumn 2022

Implementation & Review of
Persistent Memory based Applications

(R & D Report)

Submitted By: Raja Gond (190050096)

Under the guidance of
Prof. Purushottam Kulkarni & Prof. Umesh Bellur

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

2022-2023

Acknowledgements

I am grateful to Prof. Purushottam Kulkarni & Prof. Umesh Bellur for giving me my first taste
of research. I would also like to thank them for their guidance and encouragement during the course
of my project.

I would like to thank Rahul for helping me configure the optane machine.

Place: Mumbai, India [Raja Gond]

i

Abstract

Non-volatile memory (NVM) or persistent memory (PMEM) is a new type of memory module that
is capable of data persistence. Pmem provides a unique combination of affordable larger capacity.
With Innovative Technology offering distinctive operating modes it adapts to your needs across
workloads. It provides near-DRAM data access latency and can be directly accessed in bytes through
the memory bus using CPU load. Intel Optane DC has become the first commercially available
PMEM device in 2019.

Intel’s Optane Persistent Memory modules support two modes: volatile and byte-addressable
persistent memory. DRAM acts as a cache for the most frequently accessed data, while Optane
persistent memory provides large memory capacity. Cache management operations are handled by
Intel’s integrated memory controller.

We explored persistent memory in this project and did a survey of various persistent memory
libraries and write the reader-writer program to understand the working of these libraries. To know
how persistent memory affects large applications(such as Redis) performance we conduct performance
evaluations of both pmem-redis and redis-4.0.0 using the redis benchmark.

ii

Contents

Acknowledgements i

Abstract ii

List of Figures iv

1 Life Before Persistent Memory 1

2 Introduction to Persistent Memory(PMem) 2
2.1 Introduction - Data can’t be lost, if it is on pmem 2
2.2 Persistent Memory Use Cases[2] . 2
2.3 Some new programming concerns introduced by persistent memory[8] 3

3 Persistent Memory Programming & PMDK Libraries 4
3.1 Operating System Support for Persistent Memory . 4

3.1.1 Configure Intel’s Optane for direct access in Linux 6
3.2 Persistent Memory Development Kit(PMDK) Libraries[6, 10] 6

4 Applications of Persistent Memory: PMem-Redis & reader-writer 8
4.1 Reader-Writer . 8
4.2 Enabling Redis for Persistent Memory: Pmem-Redis 11

4.2.1 Redis . 11
4.2.2 Pmem-Redis . 11
4.2.3 TieredMemDB . 11

4.3 Analysis of Pmem-Redis & Redis-4.0.0 . 12

5 Discussions & Future Work 16

iii

List of Figures

1.1 Memory Storage Hierarchy[8] . 1

2.1 Memory-Storage Hierarchy with Persistent Memory Tier[8] 2

3.1 Storage and volatile memory in the operating system[10] 4
3.2 Persistent Memory As Block Storage [10] . 5
3.3 Persistent Memory-Aware File Systems [10] . 5

4.1 Redis-benchmark:- SET: Throughput vs. number of parallel clients 12
4.2 Redis-benchmark:- GET: Throughput vs. number of parallel clients 13
4.3 Redis-benchmark:- SET: Throughput vs. payload size 13
4.4 Redis-benchmark:- GET: Throughput vs. payload size 14
4.5 Redis-benchmark:- SET: Throughput vs. pipeline . 14
4.6 Redis-benchmark:- GET: Throughput vs. pipeline . 15

iv

1. Life Before Persistent Memory
Over the last few decades, computer systems have implemented the memory-storage hierarchy

shown in Figure 1.1. Successive generations of technologies have iterated on the number, size, and
speed of caches to ensure the CPUs have access to the most frequently used data. CPU speeds have
continued to get faster, adding more cores and threads with each new CPU generation as they try
to maintain Moore’s Law. The capacity, price, and speed of volatile DRAM and non-volatile storage
such as NAND SSDs or Hard Disk Drives have not kept pace and quickly become a bottleneck for
system and application performance.[8]

Figure 1.1: Memory Storage Hierarchy[8]

Dynamic Random-Access Memory (DRAM) is a common type of random access memory (RAM)
that is used in personal computers (PCs), workstations and servers. Dynamic comes from the fact
that DRAM must be refreshed after a fixed time-quanta since its cells lose their state over time.
DRAM is located close to a computer’s processor and enables faster access to data than storage
media such as hard disk drives and solid state drives but has a long access time as compared to CPU
Cache and Registers.

DRAM is very durable and fast but not able to retain data(i.e does not provide power failure
tolerance). What does this mean? If we cut off the power source(or DRAM loses its power source
for any reason) the data it was processing is lost and needs to be retrieved from disk storage. This
inability to retain data is known as volatility.[1]

DRAM is byte addressable, and provides low latency in accessing data(as compared to pmem-
more on pmem in the later section, SSDs and Hard Disks) but it is volatile and has low capacity.

In the contrast, solid-state drives and Hard-Disk Drives(HDD) is a "non-volatile" storage drives,
which means they can retain the stored data even when no power is supplied but they have low
read/write speeds and have high latency when dealing with heavy workloads. Operating systems
(OS) tell the HDD to read and write data as needed by programs. The speed that the drive reads
and writes this data is solely dependent on the drive itself.[1]

SSD and HDD are not byte addressable and have high latency as compared to DRAM but they
are cheap and non-volatile.

1

2. Introduction to Persistent Memory(PMem)
2.1 Introduction - Data can’t be lost, if it is on pmem

Non-volatile memory (NVM) or persistent memory (PMEM) is a new kind of memory device
that provides both near-DRAM data access latency and data persistence capability. Different from
block-based devices, PMEM can be directly accessed in bytes through the memory bus using CPU
load and store instruction without using block-based interfaces. Due to its high density, low cost,
and near-zero standby power cost PMEM devices have been considered as a promising part of the
next-generation memory hierarchy. Among all the persistent memory solutions, the Intel Optane DC
Persistent Memory (or Optane DC for short) has become the first commercially available PMEM
device on the market in 2019.[9]

As the NVM device (e.g., Optane DC) becomes available, software developers start to consider
porting their applications to persistent memory. However, to make it work efficiently, they need to
have an accurate expectation of their applications performance on PMEM, as well as know how to
re-design their applications to achieve the best performance.[9]

Persistent Memory (PMEM), also referred to as Non-Volatile Memory (NVM), or Storage Class
Memory (SCM), provides a new entry in the memory-storage hierarchy shown in Figure 2.1 that fills
the performance/capacity gap.[8]

Figure 2.1: Memory-Storage Hierarchy with Persistent Memory Tier[8]

With persistent memory, applications have a new tier available for data placement. In addition
to the memory and storage tiers, the persistent memory tier offers greater capacity than DRAM and
significantly faster performance than storage. Applications can access persistent memory like they
do with traditional memory, eliminating the need to page blocks of data back and forth between
memory and storage.[8]
2.2 Persistent Memory Use Cases[2]

• Cloud Service Providers Cost Reduction

The key metric for a cloud service operator is how many VMs they can deliver to their cus-
tomers, and at what cost. The size of the memory on the servers becomes the bottleneck of
how many VMs they can allocate per server, limiting how low their price per VM can go.

2

PMem(such as Intel’s Optane) is cheap compared to DRAM and delivers a larger amount of
memory per server, allocating a larger number of VMs, therefore lowering the cost per VM and
increasing the competitiveness of cloud service providers.

• Reliability with Large Memory Data Bases

Financial customers such as stock exchanges, banks, and mutual funds use a lot of memory
databases and in-memory applications.

– Fraud detection
Financial Institutions have very large amounts of data of transactions, customer records
etc. Accessing data from disks and then performing various analytics (such as illegal
transactions detection) on them is slow and time-consuming. Persistent Memory can help
in improving speed.

2.3 Some new programming concerns introduced by persistent memory[8]
It did not apply to traditional volatile memory

• Data Persistence

Stores are not guaranteed to be persistent until flushed. Although this is also true for the
decades-old memory-mapped file APIs (like mmap() and msync() on Linux), many program-
mers have not dealt with the need to flush to persistence for memory. CPUs have out-of-order
CPU execution and cache access/flushing. This means if two values are stored by the appli-
cation, the order in which they become persistent may not be the order that the application
wrote them.

• Data Consistency

8-byte stores are powerfail atomic on the x86 architecture – if a powerfail happens during an
aligned, 8-byte store to PMEM, either the old 8-bytes or the new 8-bytes (not a combination
of the two) will be found in that location after reboot. Anything larger than 8-bytes on x86 is
not powerfail atomic.

• Memory Leaks

Memory leaks to persistent storage are persistent. Rebooting the server doesn’t change the
on-device contents.

• Byte Level Access

Application developers can read and write at the byte level according to the application re-
quirements. The read/writes no longer need to be aligned or equal to storage block boundaries,
eg: 512byte, 4KiB, or 8KiB. The storage doesn’t need to read an entire block to modify a few
bytes, to then write that entire block back to persistent storage. Applications are free to
read/write as much or as little as required. This improves performance and reduces memory
footprint overheads.

• Error Handling

Applications may need to detect and handle hardware errors directly. Since applications have
direct access to the persistent memory media, any errors will be returned back to the application
as memory errors.

Page 3

3. Persistent Memory Programming & PMDK Libraries
3.1 Operating System Support for Persistent Memory

Figure 3.1: Storage and volatile memory in the operating system[10]

As shown in figure 3.1, the volatile main memory is attached directly to the CPU through a
memory bus. The operating system manages the mapping of memory regions directly into the
application’s visible memory address space. Storage, which usually operates at speeds much slower
than the CPU, is attached through an I/O controller. The operating system handles access to the
storage through device driver modules loaded into the operating system’s I/O subsystem.

Since persistent memory can be accessed directly by applications and can persist data in place,
it allows operating systems to support a new programming model that combines the performance of
memory while persisting data like a non-volatile storage device.[10]

• Persistent Memory As Block Storage The first operating system extension for persistent
memory is the ability to detect the existence of persistent memory modules and load a device
driver into the operating system’s I/O subsystem as shown in Figure 3.2. This NVDIMM
driver serves two important functions. First, it provides an interface for management and
system administrator utilities to configure and monitor the state of the persistent memory
hardware. Second, it functions similarly to the storage device drivers.[10]

4

Figure 3.2: Persistent Memory As Block Storage [10]

• Persistent Memory-Aware File Systems

Figure 3.3: Persistent Memory-Aware File Systems [10]

Make the operating system is to file system aware of and be optimized for persistent memory.
File systems that have been extended for persistent memory include Linux ext4 and XFS, and
Microsoft Windows NTFS. As shown in Figure 3.3, these file systems can either use the block
driver in the I/O subsystem or bypass the I/O subsystem to directly use persistent memory as
byte-addressable load/store memory as the fastest and shortest path to data stored in persistent
memory.

• Memory-Mapped Files

When memory mapping a file, the operating system adds a range to the application’s virtual
address space which corresponds to a range of the file, paging file data into physical memory
as required. This allows an application to access and modify file data as byte-addressable
in-memory data structures. This has the potential to improve performance and simplify ap-
plication development, especially for applications that make frequent, small updates to file
data.

Page 5

- Persistent Memory Direct Access (DAX)

The persistent memory direct access feature in operating systems, referred to as DAX in Linux
and Windows, uses the memory-mapped file interfaces but takes advantage of persistent mem-
ory’s native ability to both store data and to be used as memory.[10]

3.1.1 Configure Intel’s Optane for direct access in Linux

Intel’s Optane Persistent Memory modules support two modes: Memory Mode, which is volatile, and
App Direct mode, which is byte-addressable persistent memory.

In Memory Mode, the DRAM acts as a cache for the most frequently accessed data, while
Intel’s Optane persistent memory provides large memory capacity. Cache management operations
are handled by Intel’s Xeon Scalable processor’s integrated memory controller.

In App Direct Mode, applications and the Operating System are explicitly aware there are two
types of direct load/store memory in the platform and can direct which type of data read or write is
suitable for DRAM or Intel’s Optane persistent memory.[5]
Displaying persistent memory physical devices and regions on Linux

~$ sudo ipmctl show -dimm

Displaying persistent memory physical devices, regions, and namespaces on Linux
~$ ndctl list -DRN

Locating persistent memory on Linux
~$ df -h /dev/pmem*

The Show Topology command displays both the PMem and DDR4 DRAM DIMMs.
~$ sudo ipmctl show -topology

The Show Memory Resources command displays how the DDR/PMem capacity is allocated at the
system level.

~$ sudo ipmctl show -memoryresources

Create memory allocation goal
~$ sudo ipmctl create -goal PersistentMemoryType=AppDirect -y

Create namespaces DAX support
~$ ndctl create-namespace --mode fsdax --region region0

To get the DAX functionality, mount the file system with the dax mount option.
~$ sudo mount -o dax /dev/pmem0 /mnt/pmem/

3.2 Persistent Memory Development Kit(PMDK) Libraries[6, 10]
The Persistent Memory Development Kit (PMDK) is a growing collection of libraries and tools.

Tuned and validated on both Linux and Windows, the libraries build on the DAX (Direct Access)
feature of those operating systems which allows applications to access persistent memory as memory-
mapped files, as described in the SNIA NVM Programming Model.

The PMDK offers two library categories:

1. Volatile libraries are for use cases that only wish to exploit the capacity of persistent mem-
ory. Volatile libraries are typically simpler to use because they can fall back to dynamic
random-access memory (DRAM) when persistent memory is not available. This provides a

Page 6

more straightforward implementation. Depending on the workload, they may also have lower
overall overhead compared to similar persistent libraries because they do not need to ensure
consistency of data in the presence of failures. for example,

• libmemkind
The memkind library, called libmemkind, is a user-extensible heap manager built on top
of jemalloc. The memkind library provides familiar malloc() and free() semantics.

• libvmemcache
libvmemcache is an embeddable and lightweight in-memory caching solution that takes
full advantage of large-capacity memory, such as persistent memory with direct memory
access (DAX), through memory mapping in an efficient and scalable way.

2. Persistent libraries are for use in software that wishes to implement fail-safe persistent memory
algorithms. Persistent libraries help applications maintain data structure consistency in the
presence of failures.

• libpmem
libpmem is a low-level C library that provides a basic abstraction over the primitives ex-
posed by the operating system. It automatically detects features available in the platform
and chooses the right durability semantics and memory transfer (memcpy()) methods
optimized for persistent memory. Most applications will need at least parts of this library.

• libpmemobj
libpmemobj is a C library that provides a transactional object store, with a manual
dynamic memory allocator, transactions, and general facilities for persistent memory pro-
gramming. libpmemobj turns a persistent memory file into a flexible object store sup-
porting transactions, memory management, locking, lists, and a number of other features.

• libpmemobj-cpp
also known as libpmemobj++, is a C++ header-only library that uses the metaprogram-
ming features of C++ to provide a simpler, less error-prone interface to libpmemobj. It
is a C++ idiomatic bindings for libpmemobj. Implementing containers from scratch will
be a long effort, order of their implementation is quite important. libpmemobj++ has
its first container - an array. It is included in the pmem::obj::experimental namespace.
libpmemobj++ persistent pointer wraps around a type and provides the implementation
of operator*, operator-> and operator[]. (persistent_ptr<>)

• libpmemkv
libpmemkv is a generic embedded local key-value store optimized for persistent memory.

• libpmemlog
C library that implements a persistent memory append-only log file with power fail-safe
operations.

• libpmemblk
C library for managing fixed-size arrays of blocks. It provides fail-safe interfaces to update
the blocks through buffer-based functions.

7

4. Applications of Persistent Memory: PMem-Redis & reader-writer
4.1 Reader-Writer
Reader-Writer using array-based approach
/*
* Resources: Programming Persistent Memory

- A Comprehensive Guide for Developers by Steve Scargall
* Full code can be found [here]
(https://github.com/rajagond/pmem_cxl/blob/main/reader_writer/read_write.c)
*/
#define MAX_BUF_LEN 50
struct my_root {

int rp; //for read
int wp; //for write
int buf[MAX_BUF_LEN]; //buffer

};
int main(int argc, char *argv[]) {

char path_obj[50];
scanf("%s",path_obj);//reading string
PMEMobjpool *pop= pmemobj_open(path_obj, POBJ_LAYOUT_NAME(rweg));
if (pop == NULL) {

pop = pmemobj_create(path_obj, POBJ_LAYOUT_NAME(rweg), (100000000), 0666);
/*
* Initialisation of Fibonacci Series
* I have used transactions to read or write an element.

*/
}
PMEMoid root = pmemobj_root(pop, sizeof(struct my_root));
struct my_root *rootp = pmemobj_direct(root);
int i = rootp->wp;
for (; ; i++)
{

sleep(1);
TX_BEGIN(pop) {/* Add the previous 2 numbers in the series and store it */

TOID(struct my_root) root = POBJ_ROOT(pop, struct my_root);
TX_ADD(root); // adding full root to the transaction
printf("%d ", D_RO(root)->buf[D_RO(root)->rp]);
fflush(stdout);
D_RW(root)->rp = D_RO(root)->rp + 1;
int curr = D_RO(root)->buf[D_RO(root)->wp - 1];
int prev = D_RO(root)->buf[D_RO(root)->wp - 2];
D_RW(root)->buf[D_RO(root)->wp] = curr + prev;
D_RW(root)->wp = D_RO(root)->wp + 1;

} TX_END
}
pmemobj_close(pop);
return 0;

}
Page 8

Reader-Writer using pointer-based approach
/*
* Resources: Programming Persistent Memory

- A Comprehensive Guide for Developers by Steve Scargall
* Full code can be found [here]
(https://github.com/rajagond/pmem_cxl/blob/main/reader_writer/read_write_linked_list.cc)
* This program will print the Lucas series
*/
#define CREATE_MODE_RW (S_IWUSR | S_IRUSR)
inline int file_exists (const std::string& name) {

return access(name.c_str(), F_OK);
}
using namespace std; namespace pobj = pmem::obj;
#define LAYOUT "demo"
struct Node {

pobj::p<int> prev_data; pobj::p<int> data;
pobj::persistent_ptr<Node> next;

};
class root {

public:
pobj::persistent_ptr<Node> wp = nullptr;
pobj::persistent_ptr<Node> rp = nullptr;

};
int main() {

string path = "/mnt/pmem/po/poolfile";
pobj::pool<root> pop; pobj::persistent_ptr<root> proot;
try {

if (file_exists(path) != 0) {//File not exist
pop = pobj::pool<root>::create(path, LAYOUT, 100000000,

CREATE_MODE_RW);
proot = pop.root();
/*
* Initialisation using transactions
*/
} else {//File exists

pop = pobj::pool<root>::open(path, LAYOUT);
proot = pop.root();

}
} catch (const pmem::pool_error &e) {

std::cerr << "Exception: " << e.what() << std::endl; return 1;

Page 9

Reader-Writer using pointer-based approach(Cont.)
} catch (const pmem::transaction_error &e) {

std::cerr << "Exception: " << e.what() << std::endl; return 1;
}
while(1){//run continuously

sleep(1); //sleeping for one second
pobj::transaction::run(pop, [&] { //write

auto n = pobj::make_persistent<Node>();
if(proot->wp != nullptr){

n->prev_data = proot->wp->data;
n->data = proot->wp->data + proot->wp->prev_data;

}
else{

n->data = 1;
}
n->next = nullptr;
if (proot->rp == nullptr && proot->wp == nullptr) {

proot->rp = proot->wp = n;
} else {

proot->wp->next = n;
proot->wp = n;

}
std::cout << "\t\t\t Write: " << proot->wp->data << std::endl;

});
pobj::transaction::run(pop, [&] {// read

if (proot->rp == nullptr)
pobj::transaction::abort(EINVAL);

uint64_t ret = proot->rp->data;
auto n = proot->rp->next;
pobj::delete_persistent<Node>(proot->rp);
std::cout << "\t\t\t\t\t Read: " << ret << std::endl;
proot->rp = n;
if (proot->rp == nullptr)

proot->wp = nullptr;
});

The above reader-writer program is implemented with the help of pmdk libraries(more specifi-
cally, the array-based uses libpmemobj and the pointer-based program uses libpmemobj++). TX or
transaction used in both programs make sure that update happens in one go. In pointer-based pro-
gram, make_persistent creates a persistent Node and delete_persistence deletes the persistent
Node. pmemobj_create and pobj::pool<root>::create creates the object file with given permis-
sion and size passed as arguments. file_exists is a custom C function that return true if file
exists.

Many APIs such as TX_ADD, D_RO, D_RW, TOID are provided by the pmdk libraries for correct
implementation of the program on persistent memory. Details explanation about these APIs can be
found in this [10] book.

Page 10

4.2 Enabling Redis for Persistent Memory: Pmem-Redis
4.2.1 Redis

• The open-source, in-memory data store implements a distributed, in-memory key value used
by millions of developers as a database, cache, streaming engine, and message broker. External
programs talk to Redis using a TCP socket and a Redis-specific protocol.[4]

• Redis is a data structure server. At its core, Redis provides a collection of native data types
that help you solve a wide variety of problems, from caching to queuing to event processing(An
event is anything that happens at a clearly defined time and that can be specifically recorded.
Event processing is the process that takes events or streams of events, analyzes them and takes
automatic action.)

• Redis-Persistence How Redis writes data to disk (append-only files, snapshots, etc.)?

– RDB (Redis Database): The RDB persistence performs point-in-time snapshots of your
dataset at specified intervals.

– AOF (Append Only File): The AOF persistence logs every write operation received by the
server, which will be played again at server startup, reconstructing the original dataset.

– No persistence: we can disable persistence completely,

– RDB + AOF: It is possible to combine both AOF and RDB in the same instance.

4.2.2 Pmem-Redis

What is Pmem-Redis[3]? Pmem-Redis is one redis version that support Intel DCPMM(Data Center
Persistent Memory) based on open source redis-4.0.0. It benefits the redis’s performance by taking
advantage of DCPMM competitive performance and persistence. Basically Pmem-Redis covers many
aspects that related to DCPMM usage:

• Five typical data structures optimization including: String, List, Hash, Set, Zset.

• DCPMM copy-on-write

• Redis LRU for DCPMM

• Redis defragmentation support for DCPMM

• Pointer-based redis AOF

• Persistent ring buffer

4.2.3 TieredMemDB

TieredMemDB is a Redis branch that fully uses the advantages of DRAM and Intel Optane Persistent
Memory (PMEM). It is fully compatible with Redis and supports all its structures and features. The
main idea is to use a large PMEM capacity to store user data and DRAM speed for latency-sensitive
structures. They also offer the possibility of defining the DRAM to PMEM ratio, which will be

Page 11

automatically monitored and maintained by the application. This allows us to fully adapt the
utilization of the memory to your hardware configuration.[7]

The source code of TieredMemDB can be found in this GitHub repository.
Features:

• Different types of memory - use both DRAM and PMEM in one application.

• Memory allocation policy - define how each memory should be used. You can specify DRAM
/ PMEM ratio that will be monitored and maintained by the application.

• Redis compatible - supports all features and structures of Redis.

• Configurable - use simple parameters to configure new features.

4.3 Analysis of Pmem-Redis & Redis-4.0.0

Figure 4.1: Redis-benchmark:- SET: Throughput vs. number of parallel clients

Page 12

https://github.com/TieredMemDB/TieredMemDB

Figure 4.2: Redis-benchmark:- GET: Throughput vs. number of parallel clients

Figure 4.3: Redis-benchmark:- SET: Throughput vs. payload size

Page 13

Figure 4.4: Redis-benchmark:- GET: Throughput vs. payload size

Figure 4.5: Redis-benchmark:- SET: Throughput vs. pipeline

Page 14

Figure 4.6: Redis-benchmark:- GET: Throughput vs. pipeline

I have used redis-benchmark and have run it on Pmem-Redis-4.0.0 and Redis-4.0.0 to record the
data. On pmem-redis I have used to below command to start the redis server

sudo ./src/redis-server --nvm-maxcapacity 100 --nvm-dir /mnt/pmem --nvm-threshold 0

The above command will start a Redis server with 100GB capacity and will use the /mnt/pmem
directory as the NVM pool. The –nvm-threshold 0 option will disable the NVM threshold, which
means that the server will not evict any data from NVM to DRAM.

and redis-server to start server on Redis-4.0.0.
Both have used jemalloc to allocate memory(more specifically pmem-redis use jemalloc-4.1.0).

• Figure 4.1 & Figure 4.2, both Pmem-redis-4.0.0 and redis-4.0.0 are showing almost same be-
haviour. Fixing payload size(data size) and the number of requests with no pipelining both
are giving almost the same throughput if we vary the number of parallel clients.

• Figure 4.3 & Figure 4.4, these are the interesting plots. As we increase the payload size(data
size) pmem-redis-4.0.0 goes down as compared to redis-4.0.0. For the SET case, pmem-redis-
4.0.0 is poor for large payloads.

• Figure 4.5 & Figure 4.6, both Pmem-redis-4.0.0 and redis-4.0.0 are showing almost same
behaviour(redis-4.0.0 have somewhat better throughput). Fixing payload size(data size), the
number of requests and the number of clients, we can observe that redis-4.0.0 perform better
if we increase pipelining.

Page 15

https://redis.io/docs/management/optimization/benchmarks/#:~:text=The%20redis%2Dbenchmark%20program%20is,a%20Redis%20instance%20can%20sustain.
https://github.com/pmem/pmem-redis
https://github.com/redis/redis/tree/4.0
https://github.com/jemalloc/jemalloc/releases/tag/4.1.0

5. Discussions & Future Work

Since I was not familiar with persistent memory and redis. So, I spent most of the time building
familiarity with the background material, configuring and setting up different applications (like
pmem-redis, TieredmemDB) on the optane machine and trying out the basic persistent memory
programming.

I plan to continue working on the project and below is the possible trajectory on which I will be
working in the coming months.

• Rearchitect any popular middleware that uses persistence via disks today to take advantage of
persistent memory(PMem) where it exists.

• Exploring the specification of Compute Express Link(CXL). Compute Express Link (CXL) is
an open standard for high-speed central processing unit (CPU)-to-device and CPU-to-memory
connections, designed for high-performance data centre computers.

16

Bibliography
[1] Hard disk drive (hdd) vs. solid state drive (ssd): What’s the difference? https://www.ibm.com/

cloud/blog/hard-disk-drive-vs-solid-state-drive. [Online; accessed 22-November-2022].

[2] Persistent memory use cases. https://www.intel.com/content/www/us/en/government/
podcasts/embracing-digital-transformation-episode51.html. [Online; accessed 22-
November-2022].

[3] Pmem-redis. https://github.com/pmem/pmem-redis. [Online; accessed 22-November-2022].

[4] Redis. https://redis.io/docs/about/. [Online; accessed 22-November-2022].

[5] Intel. Optane memory start guide. https://www.intel.com/content/dam/support/us/en/
documents/memory-and-storage/optane-memory/intel-optane-memory-quick-start.pdf.
[Online; accessed 22-November-2022].

[6] Intel. Persistent memory development kit. https://pmem.io/pmdk/. [Online; accessed 22-
November-2022].

[7] Intel. Tieredmemdb. https://github.com/TieredMemDB/TieredMemDB. [Online; accessed 22-
November-2022].

[8] Intel. Persistent memory documentation. https://docs.pmem.io/persistent-memory/
getting-started-guide/introduction, 2020. [Online; accessed 22-November-2022].

[9] Abdullah Al Raqibul Islam, Anirudh Narayanan, Christopher York, and Dong Dai. A per-
formance study of optane persistent memory: From indexing data structures’ perspective.
https://webpages.charlotte.edu/ddai/papers/MSST20_Pmem_CameraReady.pdf.

[10] Steve Scargall. Introduction to Persistent Memory Programming. Apress, Berkeley, CA, 2020.

17

https://www.ibm.com/cloud/blog/hard-disk-drive-vs-solid-state-drive
https://www.ibm.com/cloud/blog/hard-disk-drive-vs-solid-state-drive
https://www.intel.com/content/www/us/en/government/podcasts/embracing-digital-transformation-episode51.html
https://www.intel.com/content/www/us/en/government/podcasts/embracing-digital-transformation-episode51.html
https://github.com/pmem/pmem-redis
https://redis.io/docs/about/
https://www.intel.com/content/dam/support/us/en/documents/memory-and-storage/optane-memory/intel-optane-memory-quick-start.pdf
https://www.intel.com/content/dam/support/us/en/documents/memory-and-storage/optane-memory/intel-optane-memory-quick-start.pdf
https://pmem.io/pmdk/
https://github.com/TieredMemDB/TieredMemDB
https://docs.pmem.io/persistent-memory/getting-started-guide/introduction
https://docs.pmem.io/persistent-memory/getting-started-guide/introduction
https://webpages.charlotte.edu/ddai/papers/MSST20_Pmem_CameraReady.pdf

	Acknowledgements
	Abstract
	List of Figures
	Life Before Persistent Memory
	Introduction to Persistent Memory(PMem)
	Introduction - Data can't be lost, if it is on pmem
	Persistent Memory Use Casespmemuse
	Some new programming concerns introduced by persistent memorypmemdoc

	Persistent Memory Programming & PMDK Libraries
	Operating System Support for Persistent Memory
	Configure Intel's Optane for direct access in Linux

	Persistent Memory Development Kit(PMDK) Librariespmdk, Scargall2020

	Applications of Persistent Memory: PMem-Redis & reader-writer
	Reader-Writer
	Enabling Redis for Persistent Memory: Pmem-Redis
	Redis
	Pmem-Redis
	TieredMemDB

	Analysis of Pmem-Redis & Redis-4.0.0

	Discussions & Future Work

